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ROLLING FRICTION AS A VISCOELASTIC DISSIPATIVE PROCESS

UDC 531.45+539.374V. S. Bulygin

The viscous additions to the stress tensor on the half-space surface over which a ball moves are
calculated with the use of a viscosity (dissipative) tensor. The rolling friction force which corresponds
to the Coulomb law and which is proportional to the velocity and which is simultaneously the lower
estimate for the sliding friction force is found. Expressions for the radial and vertical displacements
on the surface of an elastic half-space are given.

The rolling friction can be considered as a result of the joint action of various dissipative processes inside a
rolling body and inside a body over which the motion occurs. These processes can be excitation of acoustic waves,
thermal conduction upon nonuniform heating, and dissipative processes connected with the finite strain rate, i.e.,
internal friction (viscosity). Below, the processes caused by internal friction are considered.

If the strain rate is low and, therefore, the energy dissipation is insignificant (which occurs upon rolling under
normal conditions), the effects of viscosity upon deformation can be described by the viscosity or dissipative tensor
ηiklm [1]. Using this tensor, one can calculate the dissipative-power volume density, the internal friction forces in a
deformable body, and the additions to the stress tensor caused by viscosity. In an isotropic body, the tensor ηiklm
has only two independent components: the viscosity coefficient upon pure shift η and the viscosity coefficient upon
triaxial compression ζ. In this case, the viscous stress-tensor component is determined by the expression [1]

σ′ik = 2η(u̇ik − u̇llδik/3) + ζu̇llδik, (1)

where u̇ik are the time derivatives of the strain tensor and δik is the Kronecker symbol; summation is performed
over repeated indices: ull = uxx + uyy + uzz = divu (u is the strain vector).

Upon rolling of a body along a certain surface, a stress state whose elastic part is symmetric along the
motion direction and, hence, does not exert an effect on the rolling arises. The viscous stress component on the
rolling surface is nonsymmetric along the motion direction, because the signs of the strain rates in front of and
behind the rolling body are different (compression occurs in front of the body, and unloading occurs behind this
body). For this reason, the pressures across the leading and trailing parts of the body are different, which causes
rolling resistance, i.e., rolling friction of the body.

As an example, we consider the rolling of a ball along the flat surface of a viscoelastic half-space. As the
viscous corrections to the strain state are small in this case, we consider that the contact spot is a circle of radius
a determined by the solution of a corresponding contact problem (the Hertz problem [1, 2]) and one can use the
strain tensor obtained from the solution of a related elastic problem to determine σ′ik. Therefore, the elastic part of
the strain is axisymmetric and the strain vector u has only two components uρ(ρ, z) and uz(ρ, z) in the cylindrical
coordinate system with the z axis passing through the center of the ball inside the half-space along whose surface
it rolls. Here

ull = divu =
1
ρ

∂

∂ρ
(ρuρ) + uzz,

where uzz = ∂uz/∂z and ρ =
√
x2 + y2. Thus, according to (1), the viscous-stress tensor component we need

hereinafter has the form
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Fig. 1

σ′zz(ρ, z) =
(
ζ − 2

3
η
)1
ρ

∂

∂ρ
(ρu̇ρ) +

(4
3
η + ζ

)
u̇zz. (2)

To find the components of the elastic strain-vector part, we use the Green functions, i.e., the responses to
the forces which for the case where the forces are perpendicular to the half-space surface take the form [1, 2]

Gρ(ρ, z) =
1 + ν

2πE

[ z
r3
− 1− 2ν
r(r + z)

]
ρ, Gz(ρ, z) =

1 + ν

2πE

[2(1− ν)
r

+
z2

r3

]
, (3)

where E, ν are Young’s modulus and Poisson’s ratio for the half-space and r =
√
ρ2 + z2. The Green functions

allow one to find the components of the strain vector u with the use of the known pressure P (x, y) on the surface
of the deformable half-space, which is presented in the form

P (x, y) =
3N

2πa2

√
1−

(ρ
a

)2

(ρ 6 a) (4)

in the contact region in the case of impression into the surface of the ball half-space according to [1, 2]. Here N is
the normal-pressure force of the ball and a = {(3/4)[(1− ν2)/E + (1− ν2

b)/Eb]RN}1/3 is the radius of the contact
spot (R is the ball radius) and Eb and νb are Young’s modulus and Poisson’s ratio of the ball, respectively).

We obtain an expression for uρ on the half-space surface. With allowance for (3), one can write (Fig. 1)

duρ = Gρ(ρ′′, 0) cosαP (ρ′) dS = − (1 + ν)(1− 2ν)
2πE

ρ− ρ′ cosϕ
ρ′2 + ρ2 − 2ρ′ρ cosϕ

P (ρ′)ρ′ dρ′ dϕ,

whence

uρ(ρ, 0) = − (1 + ν)(1− 2ν)
πE

a∫
0

dρ′ρ′P (ρ′)

π∫
0

ρ− ρ′ cosϕ
ρ′2 + ρ2 − 2ρ′ρ cosϕ

dϕ.

One can show (see [3, formula 3.613.2]) that
π∫

0

ρ− ρ′ cosϕ
ρ′2 + ρ2 − 2ρ′ρ cosϕ

dϕ = π
H(ρ− ρ′)

ρ
,

where H(ρ) is the Heaviside (unit) function. Finally, we obtain

uρ(ρ, 0) = − (1 + ν)(1− 2ν)
Eρ

ρ∫
0

P (ρ′)ρ′ dρ′. (5)

It is noteworthy that expression (5) for the radial strain on the half-space surface under axisymmetric normal
loading is simpler and more convenient for calculations than that given in [2].

We obtain an expression for uzz = ∂uz/∂z on the boundary surface which is necessary to calculate the
viscous-stress tensor (2). The strain-vector component uz is a convolution of the Green function Gz and the surface
pressure P [1]

uz(x, y, z) =
∫∫

Gz(x− x′, y − x′, z)P (x′, y′) dx′ dy′,

547



which takes the following form at the axisymmetric pressure P (x, y) ≡ P (ρ):

ūz(w, z) = 2πḠz(w, z)P̄ (w). (6)

Here ūz, Ḡz, and P̄ is the zero-order Hankel transformations of the corresponding functions [4]. From (3), one can
obtain (see [3, formulas 6.554.1 and 6.554.4])

Ḡz(w, z) =

∞∫
0

Gz(ρ, z)J0(wρ)ρ dρ =
1 + ν

2πE

(2(1− ν)
w

+ z
)

e−wz. (7)

Here J0(x) is the Bessel function. Substituting expression (7) into (6) and differentiating (6) with respect to z to
find ūzz, it is easy to show that since ∂Ḡz/∂z for z = 0 is a constant which does not depend on the parameter of
the Hankel transformation w, the Hankel transformations ūzz and P̄ are proportional for z = 0 and, consequently,
the functions themselves are proportional. Thus, on the half-space surface, we have

uzz(ρ, 0) = − (1 + ν)(1− 2ν)
E

P (ρ). (8)

Substituting (5) and (8) into (2), we obtain the expression for the viscous-stress tensor on the surface

σ′zz = −2(1 + ν)(1− 2ν)
E

(
ζ +

1
3
η
)
Ṗ (ρ); (9)

note that if the elastic stresses P (ρ) created by the rolling ball displace with velocity v in the positive direction of
the x axis, then

Ṗ (ρ) =
dP

dρ
ρ̇ = −v x

ρ

dP

dρ
= −v 3N

2πa4

x√
1− (x2 + y2)/a2

(10)

with allowance for (4). It is clear that the coefficient at Ṗ (ρ) in (9) has the dimension of time and, as one can show,
it is the relaxation time of the strain-tensor components on the surface of a viscoelastic body, i.e., the relaxation
time of the surface relative strains. Introducing the notation for the relaxation time on the surface

τ =
2(1 + ν)(1− 2ν)

E

(
ζ +

1
3
η
)

=
ζ + η/3
K + µ/3

, (11)

where K = E/[3(1 − 2ν)] is the modulus of triaxial compression and µ = E/[2(1 + ν)] is the shear modulus, with
allowance for expressions (10) we write expression (9) for the viscous-stress tensor on the surface in the form

σ′zz(x, y) = −vτ 3N
2πa4

x√
1− (x2 + y2)/a2

.

The moment of rolling friction forces can be obtained by integration of the surface pressure equal to the
viscous-stress tensor with the opposite sign over the area of a contact spot of radius a:

Mfr = −
a∫
−a

dxx

√
a2−x2∫

−
√
a2−x2

σ′zz(x, y) dy = vτN
3

2π

1∫
−1

dθθ2

1∫
−1

dϑ√
1− ϑ2

= vτN. (12)

Considering that the rolling friction force Ffr is applied to the center of the rolling ball, we find from (12) that

Ffr = N
τv

R
, (13)

where R is the radius of the rolling ball, N is the normal-pressure force, v is the rolling velocity, and τ is the
relaxation time on the rolling surface determined in (11). The proportionality of the friction force (13) to the ratio
N/R corresponds to the Coulomb law.

It is necessary to note that upon sliding of the ball over an ideally slippery surface, when the tangent stresses
caused by sliding friction are absent, the stress state remains the same as upon rolling of a ball, i.e., the sliding
friction force is different from zero upon sliding over an ideally slippery surface. Thus, the force value determined
from (13) gives the lower estimate of the sliding friction force of the ball.
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Fig. 2

Fig. 3

In concluding, we give the expressions for the radial [uρ(ρ, 0)] and vertical [uz(ρ, 0)] strain-vector components
on the surface of an elastic half-space upon impression of the ball into it. Substituting (4) into (5), we obtain

uρ(ρ, 0) = −N
a

(1 + ν)(1− 2ν)
2πE

{
(1− (1− r2)3/2)/r, r 6 1,

1/r, r > 1.
(14)

Hereinafter, r ≡ ρ/a =
√

(x/a)2 + (y/a)2; the brace separates the coordinate-dependent part of uρ. Without taking
into account the numerical factor in front of the brace in (14), the dependence uρ(ρ, 0) is shown in Fig. 2a. The
surface uρ(x, y, 0) is shown in Fig. 2b. The radial displacement (14) is directed everywhere to the central point of
tangency of the ball with the half-space surface. Its largest value is reached for ρ = a(3/4)1/4 = 0.931a, i.e., inside
the contact spot, and it is 1.022 of the value of the expression (N/a)(1 + ν)(1− 2ν)/(2πE) in (14).

The vertical displacement of the half-space surface uz(ρ, 0) is an inverse Hankel transformation of expression
(6) for z = 0. Since the Hankel transformation of expression (4) (see [3, formula 6.567.1]) is

P̄ (w) =

a∫
0

P (ρ)J0(wρ)ρ dρ =
3N
2π

1∫
0

√
1− r2 J0(awr)r dr =

3N
2
√

2π

J3/2(aw)
(aw)3/2

,

with allowance for (6) and (7), we have

uz(ρ, 0) = 2π

∞∫
0

P̄ (w)Ḡz(w, 0)J0(ρw)w dw =
3N
a
√

2π
1− ν2

E

∞∫
0

J3/2(w0)J0

(ρ
a
w0

)
w
−3/2
0 dw0.
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Whence, after calculation of the integral (see [3, formula 6.574.1]), we obtain

uz(ρ, 0) =
3N
4a

1− ν2

E

{
1− r2/2, r 6 1,

(4/(3πr))F (1/2, 1/2; 5/2; 1/r2), r > 1,
(15)

where F (. . .) is a hypergeometric Gauss function. The brace in expression (15) separates the coordinate-dependent
part uz on the half-space surface. The dependence uz(ρ, 0) is shown in Fig. 3a without making allowance for the
numerical factor in front of the brace in (15). The surface uz(x, y, 0) is shown in Fig. 3b. The vertical displacement
of the surface (15) duplicates the form of the impressed ball in the contact spot and decreases monotonically from
the maximum value (3N/a)(1− ν2)/(4E) reached at the center of the contact spot.
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